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Within the framework of twc~dimensional seepage theory, the underground contour of a submerged apron with a region of constant 
velocity in the case where there is a layer of stagnant salt water under the apron is constructed. The solution of the corresponding 
boundary-value problem is found by Polubarinova-Kochina's method [1] using the results obtained in [2]. The results of numerical 
calculations are given and the influence of the fundamental defining parameters of the model on the shape and size of the 
underground contour of the apron is analysed. Mention is made of special and limiting cases: a scheme with a water-confining 
stratum [3], an unsubmerged apron [2] and flow around a tongue [4, 5]. © 1998 Elsevier Science Ltd. All rights reserved. 

1. S T A T E M E N T  O F  T H E  P R O B L E M  

Consider the steady plane flow of  fresh water of density [31 under an underground impermeable contour of a 
submerged apron in the case where a layer of salt water of  density P2(P2 > Pl) appears at a certain depth above 
an impermeable layer of  salt. It  is assumed that the soil is homogeneous and the motion obeys Darcy's law with 
know seepage coefficient ~ = const. Let the contour of the foundation of the apron B C  consist of  two vertical 
segments BB1 and CCI and a curvilinear part BIC1 with constant flow velocity I ~ I = ~0 (Fig. 1). The pressure H 
acting on the installation, the lengths of the vertical segments dl and d2, and also the width I = 11 +/2 of the apron, 
the left-hand end of which is fixed at the point B, are assumed given and the boundaries of the head and tail A B  
and CD are horizontal. 

The seepage zone z (Fig. 1) is bounded below by the line AD,  which passes through the fixed point z = -/h0, 
where h0 is the initial depth of  the salt water layer (before squeezing). Allowing for the immobility of the salt water 
as well as the continuity of  the pressure on crossing the boundaryAD and using the fact that h0 = (hi + h2)/2, we 
obtain [1, p. 332] 

hi = h o +  H h2 H p=  p__22 _1 (1.1) 2p '  =hO - ' ~ p '  p! 

where hi and h 2 are the depths of water flow at infinity to the left and right, respectively. 
Thus, the region of ground water flow becomes fully defined but is not known in advance. 
We now introduce the complex potential of motion co = (p + i v  (the domain of variation of the variable to is 

shown in Fig. 2) and the complex coordinate z = x + iy, respectively relative to xh0 and h0. The problem is to 
determine the position of the curve B1CI and the boundary of separation A D  under the boundary conditions 

AB:y = O, (p = -1t/2; BBl:x = -!  I, ~/= Q 

BICI: W = Q; CiC:x = 12, ~/= Q 

CD:y = O, q) = HI2; AD:w = O, (p- py = const 

(1.2) 

so that the seepage rate along the curvilinear part of the underground contour of the apron B1CI has a given constant 
value v0. In addition, the seepage flow rate Q must be found. 

2. C O N S T R U C T I O N  O F  T H E  S O L U T I O N  

The problem is solved by Polubarinova-Kochina's method based on the use of  the analytic theory of linear 
differential equations [1]l. We introduce an auxiliary variable ~, the range of variation of which is shown in Fig. 
3(a), and the required functions 
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Z = dz ld~ ,  F = d to /d~  (2.1) 

The region of the complex velocity w = do~/dz = F / Z  corresponding to boundary conditions (1.2) is shown in 
Fig. 4 and is a circular pentagon with right angles at the vertices A, D, Cz, B1 and the c u t A G D .  It belongs to the 
class of polygons in polar grids [6, p. 175], that is, it is bounded by arcs of concentric circles and segments of straight 
lines passing through the origin of coordinates. 

Unlike the usual method in which these polygons are transformed into rectilinear ones by means of a logarithmic 
function and the Christoffel--Schwarz formula is then applied, we propose to use the theory of the construction 
of mapping functions based on the solution of the Fuchs equations [1, 7-12]. Then the conformal mapping can be 
carried out by elementary methods at once in closed forms (in terms of special, and in a number of cases elementary, 
functions), making it simple and convenient for practical purposes; all the necessary constants of  the mapping are 
determined incidentally when constructing the solution. 

In this case, in order to map conformally the upper half-plane of ~ onto the circular pentagon of the w plane 
(Fig. 4), we need to construct two linearly independent integrals of the following linear second-order differential 
equation of the Fuchs class with five singular points [1, 6, 10] 
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(2.2) 

The constant k, inverse image ~ = g of the vertex of the cut G, and also the additional parameters ~ and ~1 
remain undefined in the statement of the problem. 

The change of variables 

= sn2(2Kx, k) (2.3) 

where sn is the Jacobi elliptic sine with modulus k [14], transforms the upper half-plane of ~ !nto the rectangle 
0 < Re x < 1/2, 0 < Im "~ < A/2 in the x plane (Fig. 3b), where A = K/K,  K" = K(k') and k' = q(1 - k~), K(k) is a 
complete first-order elliptical integral of the first kind. 

Using the techniques for integrating equations of this type, devised in [12, 13], we obtain 

Yl = 04('~--~)/04('~), Y2 =04(X+tx)/O4(X) (2.4) 

where ct is some suitable constant and ~4 is the theta-function. 
The function which maps conformally a rectangle in the x plane into a given circular pentagon in the w plane 

must be expressed in terms of the ratio of linear combinations of the solutions Yl and Yz. If we compare these 
combinations and use the correspondence of the points A, D, Bl and C1 in the x and w planes, we find for a) 0 < p 

W(I) =V 0 0 4 ( / + 0 t ) -  0 4 ( / - ~ )  
e-ilff~ 0 4 ('C + 0~ ) + e tlffJ l.~ 4 ('~ - 0~ ) 

(2.5) 

Defining the indices of functions (2.1) near singular points [1, 10] and allowing for relations (2.3) and (2.5), we 
arrive at the dependencx'.s 

do) dz f ( x )  2HK(k)dn(2K'~, k) 
dx f ( x ) ,  ~ =  f ( x ) =  = dx w(x) '  K(k)  A~BA ~ 

All =(1 -  B2)sn2 (2Kx, k)+B 2, Ac = l - (1 -k '2C2)sn2(2Kx ,  k) 

B=sn(2Kb, k'), C=sn(2Kc, k') 

~. = 41 - (k'BC) 2 

(2.6) 

The seepage flow rate is given by the formula 

Q = nK(~.')/KO.) (2.7) 

It can be verified that the functions (2.1) defined by relations (2.6) and (2.3) satisfy boundary conditions (1, 2) 
written in terms of the functions mentioned and, therefore, are a parametric solution of the original boundary- 
value problem. 

3. S P E C ] [ A L  A N D  L I M I T I N G  C A S E S ;  T H E  C R I T I C A L  R E G I M E  

1. The case p = ,o (a scheme with a backwater). We will first discuss the limiting case p = oo (P2 = 00) which, 
within the framework of the given seepage model, can be interpreted as the "freezing" of salt water. The boundary 
of separation is converted into a horizontal backwater, as we can see, using Eq. (2.5) and the expression for 13 and 
allowing for the fact that when fl = ~o on AD 

dz _ f ( x )  0 4 ( x + ~ ) + 0 4 ( 1 ; - ~ )  (3.1) 
dx v 0 04(x+ ¼ ) -  ~4('c-¼) 

and, therefore, (0y/09).,~, = 0, YAP = const. 
Changing from theta-functions to elliptic functions in (3.1) [14], after some reduction and making the substitution 

2klsn2(2Kx, k ) - ( l + ~ q )  ~.l i - k "  
~= ~.l[l+~q -2sn2(2Kx. k)] '  = l+k  - - - ' 7  
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we reduce expression (3.1) to a form which is the same as Eq. (7.8) in [1 p. 189] in which tz = 0. 
2. The case dl = d2 = 0 (a non-submerged apron). For this case we need merely put B = C = 1 in (2.6), and then 

AB = 1, Ac = dn(2Kx, k), X = k , f (x )  = 2H and we obtain the results of [2]. 
3. The case ~0 = P. Taking the limit ~0 ~ P in the expression for dz/dx in (2.6), using the formulae for 0t and I~ 

and expanding the interdeterminacy that arises, we find 

dz _ f('Q fi ~ (3.2) 
d r - v  o ~ K ( k ) Z [ K ( 2 x - I ) ]  ) 

where Z is the zeta-function [14]. 
4. The case ~0 > P. Transforming the expression for dz/dx in (2.6) as it applies to the relation a) 0 > p, we obtain 

dz = if(x) e-n~ 03 ('c +ot/)-eZt303(x-ot/) 

dx v o O3(x+ct i ) -O3(x-o~i)  
(3.3) 

5. The case ~o = 0" (flow past a tongue). If  the points B 1 and CI in the w plane merge at infinity (Fig. 4), the 
rectangle of the x plane degenerates into the semi-strip 0 < Re x < 1/2, 0 < I m  x < ** (Fig. 3b). Taking the limit 
in (3.3) as k ~ 0, we find 

dz 2 H A + e 2 ~ i  (3.4) 

dx p A~'~BA ~ sin2~x 

where this time An = (1 - B 2) sin2xx + B 2, Ac = 1 - (1 - C2)sin2n, x, B = sin r~b, C = sin rtc and A is a certain 
constant which regularizes the position of the vertex of the cut G in the w plane. 

Equation (3.4) is the same (apart from the notation) as Eq. (2.3) of [4], if we put t = --cos 2~x, C = A/p,  n = 
1/A in the latter. Moreover, if the points B and C merge, corresponding to the case of a point tongue, from (3.4) 
we obtain a relation which is the same as Eq. (2.5) of [5],with 7 = 0 in the latter. 

6. The critical regime. If  the right-hand end of the boundary of separation butts up against the boundary of the 
tail, some of the salt water emerges on its surface. In the w plane this case corresponds to the cut disappearing 
and the circular pentagon degenerating into a triangle (for x) 0 ~< p) or quadrilateral (when ~0 > P), bounded by 
two Apollo circles and straight-line sections orthogonal to those. The solution of the problem is obtained by taking 
the limit as k" ~ 0 from (2.6) (in the first case) and from (3.3) for tx = A/2 (in the second). 

4. C A L C U L A T I O N  O F  T H E  P A T T E R N  F L O W  A N D  A N A L Y S I S  
O F  T H E  N U M E R I C A L  R E S U L T S  

The basic representations (2.6), (3.1)-(3.4) contain three unknown constants: model k (or constant A in (3.4)) 
and two parameters of the mapping B and C, which can be found from the apron width I and the length of the 
vertical segments dl and d 2. These equations, integrated for different parts of the boundary of region x, yield the 
parametric equations of the corresponding parts of the scheme. We can check by numerical means that the functions 
which appear in these equations are monotone, and thereby establish the unique solvability of the system relative 
to the unknown constants. 
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Having found the required parameters, we must determine the flow rate Q, the apron depth d, the difference 
T of the markers in the head and tail, and also calculate the coordinates of  points of the underground contour of 
the apron B1C1 and the boundary of  separation AD. 

Figure 1 shows the underground contour of the apron and the boundary of separation calculated for h0 = 1.0; 
H = 0.16; l = 1.3: p = 0.175; v0 = 0.0805; d l =  0.1 and d2 = 0.11. The results on the influence of the quantities 
H, p, v0, l, dl  and d2 on 1the flow characteristics d, Q and T are summarized in Tables 1-3 (negative values of T 
denote that the boundar.¢ of the tail is above the abscissa axis). Each side of the tables corresponds to a different 
value of one of the par~tmeters while the others are the same as in Fig. 1. The relation between the required 
characteristics and these parameters can be described as follows. 

1. There is an interesting common relation between the flow characteristics and the parameters H and O: as the 
density P2 of the salt watcr and the acting pressure H increase, the boundary of the tail drops, and the apron depth 
and, therefore, the flow rate Q increase. Thus, when H increases from 0.15 to 0.1675, the values o f d  and Q change 
by a factor of 1.5 and 2.7 respectively. Furthermore, as the parameter p decreases from 0.3 to 0.1, the depth h2 is 
reduced by a factor of 3.7, so that the ratio hi~h2 increases from 1.7 to 9.0. Thus, the amount of squeezing increases 
as the pressure increases or as the density of the salt water is reduced. 

2. On the other hand, as the parameters v0, l and d2 decrease, the apron is more deeply submerged and the flow 
rate increases. For example, as the width l decreases from 1.4 to 1.23, the depth d increases by a factor of 1.3, and 
the flow rate by a factor of 1.7. This confirms one important result of [3]: the shorter the apron, the thicker it must 
be for the same velocity 1:0 . 

3. The quantity T changes the most: when the velocity v0 increases by no more than 6.2%, T changes by a factor 
of 6.4. 

4. The influence of the parameters d~ and d2 on the flow pattern is especially interesting. When 174i and dl and 
d2 increase from 0.05 to 0.4, the flow rate, which, as we can see from Table 3, is practically the same for equal 
values of these parameters, decreases by 38-39%, the apron depth d increasing by 18% in the first case and 
decreasing by 24% in the second. The parameter which has the greatest influence on T is d2. Thus, for d2 = 0.05; 
0.2 and d2 and 0.4 we have;, respectively, T = -0.0034; 0.0219 and -0.0253, showing that the change is non-monotone. 
A graph of T versus d2/dj is shown in Fig. 5. 

Strangely enough, as the calculations show, this problem can yield a very interesting pattern flow, due to the 
fact that close to the vertical wall CIC when x </2, ymcl(X) > 0. This can be interpreted as an apron which has a 
"streamlined" tongue or tooth in its lower part, when a similar scheme to that shown in Fig. 139b of  [1] can be 
used. 

In such cases the difference between the markers in the head and tail might be quite considerable. Thus, when 
l = 1.4, we have T = -0A334 (see the right-hand side of Table 2), so that I T/d21 = 1.21. This ratio increases with 
the apron width L 

Table 1 

Hxl02  dx l03  Qxl04  Txl04 p dx l03  Qx104 Tx104 

15.00 427 480 -1038 0.1 518 708 -800 
16.00 564 757 176 0.3 585 768 564 
16.75 664 1283 914 ~ 609 773 1035 

Table 2 

~0 X 104 d x 103 Q x 104 T x  104 1 d x 103 Q x 104 T x  104 

805 564 757 176 1.23 645 1559 1024 
835 483 600 -556 1.32 538 688 -95 
855 428 518 -1125 1.40 440 495 -1334 

Table 3 

dl dx 10 3 Q x 10 4 T x  104 d2 dx 10 3 Q x 10 4 T x  10 4 

0.05 565 812 173 0.05 585 823 -34 
0.20 577 649 329 0.20 524 659 219 
0.40 669 502 1188 0.40 441 499 -253 
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